De Moivre’s Theorem in complex numbers, states that:
For all \(x \in \mathbb{R}\) and \(n \in \mathbb{Z}\)
\({(\cos \ x + i \sin \ x)}^n = \cos \ nx + i \sin \ nx\)
where, \(i = \sqrt{-1}\)
For example;
\(i^2 = {(cos \ \frac{\pi}{2} + i sin \ \frac{\pi}{2})}^2\)
= \((cos \ 2 \times \frac{\pi}{2} + i sin \ 2 \times \frac{\pi}{2})\)
= \((cos \ \pi + i sin \ \pi)\) = \(1\)
Index
History
The credit to find the De Moivre’s formula in its recognizable form goes to Abraham De Moivre himself. Abraham De Moivre, in his 1707 A.D. paper in Philosophical Transactions of the Royal Society of London, deduced a formula from which the recognizable form of De Moivre’s formula can be obtained.
In 1749 Euler proved this formula for any real value of \(n\) using Euler’s identity.

Derivation of De Moivre’s Formula from Euler’s Identity
De Moivre’s Formula comes out as a natural consequence of Euler’s Identity. The Euler’s Identity is
\(e^{ix} = cos \ x + i sin \ x\)
where, \(e\) is the natural logarithmic base and \(x \in \mathbb{R}\).
We know from the exponential law that,
\((e^{a})^b = e ^{ab}\)
Let \(n \in \mathbb{Z}\).
We have, \((e^{ix} )^n = e^{inx}\)
Since \(nx \in \mathbb{R}\)
\(( cos \ x + isin \ x )^n = cos \ nx + isin \ nx\)
De Moivre’s Theorem Proof by Mathematical Induction
Now let’s see proof of the De Moivre’s Theorem by using Principle of mathematical induction.
To Prove: \(( cos \ x + isin \ x )^n = cos \ nx + isin \ nx ; x \in \mathbb{R} \mbox{ & } n \in \mathbb{Z}\)
Proof:
For \(n = 1\) :
\(( cos \ x + isin \ x )^1 = cos \ x + isin \ x = cos \ 1 \times x + isin \ 1 \times x\)
This is trivially true.
For \(n = k\) :
Let the statement be true for some \(n = k ; k \in \mathbb{Z}\).
That is,
\(( cos \ x + isin \ x )^k = cos \ kx + isin \ kx\)
Consider,
\(( cos \ x + isin \ x )^k ( cos \ x + isin \ x )\)
= \(( cos \ kx + isin \ kx ) ( cos \ x + isin \ x )\)
= \(( cos \ kx . cos \ x – sin \ kx . sin \ x ) + i ( cos \ kx . sin \ x + sin \ kx . cos \ x )\)
We know the trigonometric identities:
\(cos ( A + B ) = cos A \ cos B – sin A \ sin B\)
\(sin ( A + B ) = sin A \ cos B + sin B \ cos A\)
Using these,
\(( cos \ kx . cos \ x – sin \ kx . sin \ x ) + i ( cos \ kx . sin \ x + sin \ kx . cos \ x )\)
= \(cos \ (k+1)x + isin \ (k+1)x\)
Hence proved by induction.
Implications and Applications of De Moivre’s Theorem
Now let’s move on to discussion of implications and applications of this theorem.
Formulae for \(\sin(nx)\) and \(\cos(nx)\)
We have by binomial expansion,
\(( cos \ x + isin \ x )^ n = \sum_{k=0}^{n} {n \choose k} (cos \ x )^k (sin \ x )^{n-k} \ i^{n-k}\)
We have,
\(i^{n-k} = (cos \ \frac{\pi}{2} + i sin \ \frac{\pi}{2} )^{n-k}\)
= \(cos \ (n-k) \frac{\pi}{2} + i sin \ (n-k) \frac{\pi}{2}\)
Therefore,
\(( cos \ x + isin \ x )^ n\)
= \(\sum_{k=0}^{n} {n \choose k} (cos \ x )^k (sin \ x )^{n-k} \ ( cos \ (n-k) \frac{\pi}{2} + i sin \ (n-k) \frac{\pi}{2} )\)
= \(cos \ nx + isin \ nx\)
Equating Real and Imaginary parts we get,
\(cos \ nx = \sum_{k=0}^{n} {n \choose k} (cos \ x )^k (sin \ x )^{n-k} \ cos \ (n-k) \frac{\pi}{2}\)
and,
\(sin \ nx = \sum_{k=0}^{n} {n \choose k} (cos \ x )^k (sin \ x )^{n-k} \ sin \ (n-k) \frac{\pi}{2}\)
Hence, we found very useful formulae for sine and cosine using De Moivre’s formula.
Finding \(n^{th}\) Root of a Complex Number
Let \(z\) be a complex number.
To find: \(z^(\frac{1}{n} ) ; n = 1, 2, 3 …\)
Write z in the polar form.
\(z = r ( cos \ x + isin \ x )\)
let \(z^{\frac{1}{n} } = j\)
\(z = j^n\)
Let \(j = \beta ( cos \ \alpha + isin \ \alpha )\)
Using De Moivre’s formula,
\({\beta}^n ( cos \ n \alpha + isin \ n \alpha ) = r ( cos \ x + isin \ x )\)
Comparing terms,
\({\beta }^n = r\)
\(\beta = r ^{\frac{1}{n} }\)
\(cos \ n \alpha = cos \ x\)
\(n \alpha = x + 2 \pi k ; k = 0, 1, 2 … , n-1\)
\(\alpha = \frac{x + 2 \pi k}{n}\)
Therefore,
\(z^{ \frac{1}{n} } = ( r ( cos \ x + isin \ x ) )^{ \frac{1}{n} }\)
= \(r^{ \frac{1}{n} } ( cos \ \frac{x + 2 \pi k }{n} + isin \ \frac{x + 2 \pi k }{n} ) ; k = 0, 1, 2, … , n-1\)
Examples
Question 1. Simplify \(( \frac{ 1+ cos 2 \ x + isin 2 \ x }{ 1+ cos 2 \ x – isin 2 \ x } )^{30}\)
Solution. Let \(z = cos \ 2x + isin \ 2 x\).
Therefore,
\(( \frac{ 1+ cos \ 2x + isin \ 2 x }{ 1+ cos \ 2x – isin \ 2x } )^{30}\)
\(( \frac{1 + z}{ 1+ \overline{z}} )^{30}\) = \(( \frac{ (1 + z)}{ 1 + \frac{1}{z}} )^{30}\)
= \(( \frac{ ( 1 + z)z}{ 1+ z})^{30}\) = \(( z )^{30}\) = \(( cos \ 2x + isin \ 2 x )^{30}\)
= \(cos \ 60x + isin \ 60x\).
Question 2. Find All the cube roots of unity.
Solution. \(z = 1 = cos \ 0 + isin \ 0\)
Using the formula,
\(z^{ \frac{1}{n} } = ( r ( cos \ x + isin \ x ) )^{ \frac{1}{n} }\)
= \(r^{ \frac{1}{n} } ( cos \ \frac{x + 2 \pi k }{n} + isin \ \frac{x + 2 \pi k }{n} ) ; k = 1,2,… n-1\)
We have,
\(1^{ \frac{1}{3} } = ( cos \ 0 + isin \ 0 )^{ \frac{1}{3} }\)
= \(( cos \ \frac{0 + 2 \pi k }{3} + isin \ \frac{0 + 2 \pi k }{3} ) ; k = 0, 1, 2.\)
= \(( cos \ \frac{ 2 \pi k }{3} + isin \ \frac{2 \pi k }{3} ) ; k = 0, 1, 2.\)
For \(k = 0\):
\(1^{ \frac{1}{3} } = 1\)
For \(k = 1\):
\(1^{ \frac{1}{3} } = ( cos \ \frac{ 2 \pi }{3} + isin \ \frac{2 \pi }{3} )\)
= \(( cos \ \pi – \frac{ \pi }{3} + isin \ \pi – \frac{\pi }{3} )\) = \(( – cos \ \frac{ \pi }{3} + isin \ \frac{\pi }{3} )\)
= \(- \frac{1}{2} + i \frac{\sqrt{3}}{2}\)
For \(k = 2\):
\(1^{ \frac{1}{3} } = ( cos \ \frac{ 4 \pi }{3} + isin \ \frac{4 \pi }{3} )\)
= \(( cos \ \pi + \frac{ \pi }{3} + isin \ \pi + \frac{\pi }{3} )\) = \(( – cos \ \frac{ \pi }{3} – isin \ \frac{\pi }{3} )\)
= \(- \frac{1}{2} – i \frac{\sqrt{3}}{2}\)
Therefore Cube roots of unity are: \(1\), \(- \frac{1}{2} + i \frac{\sqrt{3}}{2}\) and \(- \frac{1}{2} – i \frac{\sqrt{3}}{2}\).
FAQs
De Moivre’s Theorem or De Moivre’s Formula in complex numbers ,states that:
for all \(x \in \mathbb{R}\) and \(n \in \mathbb{Z}\)
\({(\cos \ x +i \sin \ x)}^n = \cos \ nx +i \sin \ nx\)
where \(i = \sqrt{-1}\)
The Euler’s Identity is
\(e^ {ix} = cos \ x + isin \ x\)
We know from the exponential law that,
\((e^{a})^b = e ^{ab}\)
Let \(n \in \mathbb{Z}\). We have,
\((e^{ix} )^n = e^{inx}\)
Since \(nx \in \mathbb{R}\)
\(( cos \ x + isin \ x )^n = cos \ nx + isin \ nx\)
which is the recognized De Moivre’s formula.